#!/usr/bin/python # -*- encoding: utf-8 -*- import torch import torch.nn as nn import torch.nn.functional as F import torchvision from nets.stdcnet import STDCNet1446, STDCNet813 from modules.bn import InPlaceABNSync as BatchNorm2d # BatchNorm2d = nn.BatchNorm2d class ConvBNReLU(nn.Module): def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1, *args, **kwargs): super(ConvBNReLU, self).__init__() self.conv = nn.Conv2d(in_chan, out_chan, kernel_size = ks, stride = stride, padding = padding, bias = False) # self.bn = BatchNorm2d(out_chan) # self.bn = BatchNorm2d(out_chan, activation='none') self.bn = nn.BatchNorm2d(out_chan) self.relu = nn.ReLU() self.init_weight() def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) return x def init_weight(self): for ly in self.children(): if isinstance(ly, nn.Conv2d): nn.init.kaiming_normal_(ly.weight, a=1) if not ly.bias is None: nn.init.constant_(ly.bias, 0) class BiSeNetOutput(nn.Module): def __init__(self, in_chan, mid_chan, n_classes, *args, **kwargs): super(BiSeNetOutput, self).__init__() self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1) self.conv_out = nn.Conv2d(mid_chan, n_classes, kernel_size=1, bias=False) self.init_weight() def forward(self, x): x = self.conv(x) x = self.conv_out(x) return x def init_weight(self): for ly in self.children(): if isinstance(ly, nn.Conv2d): nn.init.kaiming_normal_(ly.weight, a=1) if not ly.bias is None: nn.init.constant_(ly.bias, 0) def get_params(self): wd_params, nowd_params = [], [] for name, module in self.named_modules(): if isinstance(module, (nn.Linear, nn.Conv2d)): wd_params.append(module.weight) if not module.bias is None: nowd_params.append(module.bias) elif isinstance(module, nn.BatchNorm2d):######################1 nowd_params += list(module.parameters()) return wd_params, nowd_params class AttentionRefinementModule(nn.Module): def __init__(self, in_chan, out_chan, *args, **kwargs): super(AttentionRefinementModule, self).__init__() self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1) self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size= 1, bias=False) # self.bn_atten = nn.BatchNorm2d(out_chan) # self.bn_atten = BatchNorm2d(out_chan, activation='none') self.bn_atten = nn.BatchNorm2d(out_chan)########################2 self.sigmoid_atten = nn.Sigmoid() self.init_weight() def forward(self, x): feat = self.conv(x) atten = F.avg_pool2d(feat, feat.size()[2:]) atten = self.conv_atten(atten) atten = self.bn_atten(atten) atten = self.sigmoid_atten(atten) out = torch.mul(feat, atten) return out def init_weight(self): for ly in self.children(): if isinstance(ly, nn.Conv2d): nn.init.kaiming_normal_(ly.weight, a=1) if not ly.bias is None: nn.init.constant_(ly.bias, 0) class ContextPath(nn.Module): def __init__(self, backbone='CatNetSmall', pretrain_model='', use_conv_last=False, *args, **kwargs): super(ContextPath, self).__init__() self.backbone_name = backbone if backbone == 'STDCNet1446': self.backbone = STDCNet1446(pretrain_model=pretrain_model, use_conv_last=use_conv_last) self.arm16 = AttentionRefinementModule(512, 128) inplanes = 1024 if use_conv_last: inplanes = 1024 self.arm32 = AttentionRefinementModule(inplanes, 128) self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) self.conv_avg = ConvBNReLU(inplanes, 128, ks=1, stride=1, padding=0) elif backbone == 'STDCNet813': self.backbone = STDCNet813(pretrain_model=pretrain_model, use_conv_last=use_conv_last) self.arm16 = AttentionRefinementModule(512, 128) inplanes = 1024 if use_conv_last: inplanes = 1024 self.arm32 = AttentionRefinementModule(inplanes, 128) self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) self.conv_avg = ConvBNReLU(inplanes, 128, ks=1, stride=1, padding=0) else: print("backbone is not in backbone lists") exit(0) self.init_weight() def forward(self, x): H0, W0 = x.size()[2:] feat2, feat4, feat8, feat16, feat32 = self.backbone(x) H8, W8 = feat8.size()[2:] H16, W16 = feat16.size()[2:] H32, W32 = feat32.size()[2:] avg = F.avg_pool2d(feat32, feat32.size()[2:]) avg = self.conv_avg(avg) avg_up = F.interpolate(avg, (H32, W32), mode='nearest') feat32_arm = self.arm32(feat32) feat32_sum = feat32_arm + avg_up feat32_up = F.interpolate(feat32_sum, (H16, W16), mode='nearest') feat32_up = self.conv_head32(feat32_up) feat16_arm = self.arm16(feat16) feat16_sum = feat16_arm + feat32_up feat16_up = F.interpolate(feat16_sum, (H8, W8), mode='nearest') feat16_up = self.conv_head16(feat16_up) return feat2, feat4, feat8, feat16, feat16_up, feat32_up # x8, x16 def init_weight(self): for ly in self.children(): if isinstance(ly, nn.Conv2d): nn.init.kaiming_normal_(ly.weight, a=1) if not ly.bias is None: nn.init.constant_(ly.bias, 0) def get_params(self): wd_params, nowd_params = [], [] for name, module in self.named_modules(): if isinstance(module, (nn.Linear, nn.Conv2d)): wd_params.append(module.weight) if not module.bias is None: nowd_params.append(module.bias) elif isinstance(module, nn.BatchNorm2d):#################3 nowd_params += list(module.parameters()) return wd_params, nowd_params class FeatureFusionModule(nn.Module): def __init__(self, in_chan, out_chan, *args, **kwargs): super(FeatureFusionModule, self).__init__() self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0) self.conv1 = nn.Conv2d(out_chan, out_chan//4, kernel_size = 1, stride = 1, padding = 0, bias = False) self.conv2 = nn.Conv2d(out_chan//4, out_chan, kernel_size = 1, stride = 1, padding = 0, bias = False) self.relu = nn.ReLU(inplace=True) self.sigmoid = nn.Sigmoid() self.init_weight() def forward(self, fsp, fcp): fcat = torch.cat([fsp, fcp], dim=1) feat = self.convblk(fcat) atten = F.avg_pool2d(feat, feat.size()[2:]) atten = self.conv1(atten) atten = self.relu(atten) atten = self.conv2(atten) atten = self.sigmoid(atten) feat_atten = torch.mul(feat, atten) feat_out = feat_atten + feat return feat_out def init_weight(self): for ly in self.children(): if isinstance(ly, nn.Conv2d): nn.init.kaiming_normal_(ly.weight, a=1) if not ly.bias is None: nn.init.constant_(ly.bias, 0) def get_params(self): wd_params, nowd_params = [], [] for name, module in self.named_modules(): if isinstance(module, (nn.Linear, nn.Conv2d)): wd_params.append(module.weight) if not module.bias is None: nowd_params.append(module.bias) elif isinstance(module, nn.BatchNorm2d):##################4 nowd_params += list(module.parameters()) return wd_params, nowd_params class BiSeNet(nn.Module): def __init__(self, backbone, n_classes, pretrain_model='', use_boundary_2=False, use_boundary_4=False, use_boundary_8=False, use_boundary_16=False, use_conv_last=False, heat_map=False, *args, **kwargs): super(BiSeNet, self).__init__() self.use_boundary_2 = use_boundary_2 self.use_boundary_4 = use_boundary_4 self.use_boundary_8 = use_boundary_8 self.use_boundary_16 = use_boundary_16 # self.heat_map = heat_map self.cp = ContextPath(backbone, pretrain_model, use_conv_last=use_conv_last) if backbone == 'STDCNet1446': conv_out_inplanes = 128 sp2_inplanes = 32 sp4_inplanes = 64 sp8_inplanes = 256 sp16_inplanes = 512 inplane = sp8_inplanes + conv_out_inplanes elif backbone == 'STDCNet813': conv_out_inplanes = 128 sp2_inplanes = 32 sp4_inplanes = 64 sp8_inplanes = 256 sp16_inplanes = 512 inplane = sp8_inplanes + conv_out_inplanes else: print("backbone is not in backbone lists") exit(0) self.ffm = FeatureFusionModule(inplane, 256) self.conv_out = BiSeNetOutput(256, 256, n_classes) self.conv_out16 = BiSeNetOutput(conv_out_inplanes, 64, n_classes) self.conv_out32 = BiSeNetOutput(conv_out_inplanes, 64, n_classes) self.conv_out_sp16 = BiSeNetOutput(sp16_inplanes, 64, 1) self.conv_out_sp8 = BiSeNetOutput(sp8_inplanes, 64, 1) self.conv_out_sp4 = BiSeNetOutput(sp4_inplanes, 64, 1) self.conv_out_sp2 = BiSeNetOutput(sp2_inplanes, 64, 1) self.init_weight() def forward(self, x): H, W = x.size()[2:] feat_res2, feat_res4, feat_res8, feat_res16, feat_cp8, feat_cp16 = self.cp(x) feat_out_sp2 = self.conv_out_sp2(feat_res2) feat_out_sp4 = self.conv_out_sp4(feat_res4) feat_out_sp8 = self.conv_out_sp8(feat_res8) feat_out_sp16 = self.conv_out_sp16(feat_res16) feat_fuse = self.ffm(feat_res8, feat_cp8) feat_out = self.conv_out(feat_fuse) feat_out16 = self.conv_out16(feat_cp8) feat_out32 = self.conv_out32(feat_cp16) feat_out = F.interpolate(feat_out, (H, W), mode='bilinear', align_corners=True) feat_out16 = F.interpolate(feat_out16, (H, W), mode='bilinear', align_corners=True) feat_out32 = F.interpolate(feat_out32, (H, W), mode='bilinear', align_corners=True) if self.use_boundary_2 and self.use_boundary_4 and self.use_boundary_8: return feat_out, feat_out16, feat_out32, feat_out_sp2, feat_out_sp4, feat_out_sp8 if (not self.use_boundary_2) and self.use_boundary_4 and self.use_boundary_8: return feat_out, feat_out16, feat_out32, feat_out_sp4, feat_out_sp8 if (not self.use_boundary_2) and (not self.use_boundary_4) and self.use_boundary_8: return feat_out, feat_out16, feat_out32, feat_out_sp8 if (not self.use_boundary_2) and (not self.use_boundary_4) and (not self.use_boundary_8): return feat_out, feat_out16, feat_out32 def init_weight(self): for ly in self.children(): if isinstance(ly, nn.Conv2d): nn.init.kaiming_normal_(ly.weight, a=1) if not ly.bias is None: nn.init.constant_(ly.bias, 0) def get_params(self): wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params = [], [], [], [] for name, child in self.named_children(): child_wd_params, child_nowd_params = child.get_params() if isinstance(child, (FeatureFusionModule, BiSeNetOutput)): lr_mul_wd_params += child_wd_params lr_mul_nowd_params += child_nowd_params else: wd_params += child_wd_params nowd_params += child_nowd_params return wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params if __name__ == "__main__": # net = BiSeNet('STDCNet813', 19) # 原始 net = BiSeNet('STDCNet813', 3) # 改动 net.cuda() net.eval() in_ten = torch.randn(1, 3, 768, 1536).cuda() out, out16, out32 = net(in_ten) print(out.shape) # torch.save(net.state_dict(), 'STDCNet813.pth')###