from collections import OrderedDict import torch.nn as nn from .bn import ABN class IdentityResidualBlock(nn.Module): def __init__(self, in_channels, channels, stride=1, dilation=1, groups=1, norm_act=ABN, dropout=None): """Configurable identity-mapping residual block Parameters ---------- in_channels : int Number of input channels. channels : list of int Number of channels in the internal feature maps. Can either have two or three elements: if three construct a residual block with two `3 x 3` convolutions, otherwise construct a bottleneck block with `1 x 1`, then `3 x 3` then `1 x 1` convolutions. stride : int Stride of the first `3 x 3` convolution dilation : int Dilation to apply to the `3 x 3` convolutions. groups : int Number of convolution groups. This is used to create ResNeXt-style blocks and is only compatible with bottleneck blocks. norm_act : callable Function to create normalization / activation Module. dropout: callable Function to create Dropout Module. """ super(IdentityResidualBlock, self).__init__() # Check parameters for inconsistencies if len(channels) != 2 and len(channels) != 3: raise ValueError("channels must contain either two or three values") if len(channels) == 2 and groups != 1: raise ValueError("groups > 1 are only valid if len(channels) == 3") is_bottleneck = len(channels) == 3 need_proj_conv = stride != 1 or in_channels != channels[-1] self.bn1 = norm_act(in_channels) if not is_bottleneck: layers = [ ("conv1", nn.Conv2d(in_channels, channels[0], 3, stride=stride, padding=dilation, bias=False, dilation=dilation)), ("bn2", norm_act(channels[0])), ("conv2", nn.Conv2d(channels[0], channels[1], 3, stride=1, padding=dilation, bias=False, dilation=dilation)) ] if dropout is not None: layers = layers[0:2] + [("dropout", dropout())] + layers[2:] else: layers = [ ("conv1", nn.Conv2d(in_channels, channels[0], 1, stride=stride, padding=0, bias=False)), ("bn2", norm_act(channels[0])), ("conv2", nn.Conv2d(channels[0], channels[1], 3, stride=1, padding=dilation, bias=False, groups=groups, dilation=dilation)), ("bn3", norm_act(channels[1])), ("conv3", nn.Conv2d(channels[1], channels[2], 1, stride=1, padding=0, bias=False)) ] if dropout is not None: layers = layers[0:4] + [("dropout", dropout())] + layers[4:] self.convs = nn.Sequential(OrderedDict(layers)) if need_proj_conv: self.proj_conv = nn.Conv2d(in_channels, channels[-1], 1, stride=stride, padding=0, bias=False) def forward(self, x): if hasattr(self, "proj_conv"): bn1 = self.bn1(x) shortcut = self.proj_conv(bn1) else: shortcut = x.clone() bn1 = self.bn1(x) out = self.convs(bn1) out.add_(shortcut) return out