#!/usr/bin/python # -*- encoding: utf-8 -*- from logger import setup_logger from models.model_stages import BiSeNet from cityscapes import CityScapes import torch import torch.nn as nn from torch.utils.data import DataLoader import torch.nn.functional as F import torch.distributed as dist import os import os.path as osp import logging import time import numpy as np from tqdm import tqdm import math class MscEvalV0(object): def __init__(self, scale=0.5, ignore_label=255): self.ignore_label = ignore_label self.scale = scale def __call__(self, net, dl, n_classes): # evaluate hist = torch.zeros(n_classes, n_classes).cuda().detach() if dist.is_initialized() and dist.get_rank() != 0: diter = enumerate(dl) else: diter = enumerate(tqdm(dl)) for i, (imgs, label) in diter: # label = torch.argmax(label, dim=4) # 添加 # print("11111111111111111111111111111111") # print(label.shape) # print("2222222222222222222222222222222222") N, _, H, W = label.shape # 原始 # N, _, H, W = label.shape[0:-1] # 改动 label = label.squeeze(1).cuda() # 原始 # label = label.cuda() # 改动 # print("33333333333333333333333333") # print(label.shape) # print("55555555555555555555555555") size = label.size()[-2:] imgs = imgs.cuda() N, C, H, W = imgs.size() new_hw = [int(H*self.scale), int(W*self.scale)] imgs = F.interpolate(imgs, new_hw, mode='bilinear', align_corners=True) logits = net(imgs)[0] logits = F.interpolate(logits, size=size, mode='bilinear', align_corners=True) probs = torch.softmax(logits, dim=1) preds = torch.argmax(probs, dim=1) keep = label != self.ignore_label # print("333333333333333333333") # print(keep) # print("666666666666666666666666") hist += torch.bincount(label[keep] * n_classes + preds[keep], minlength=n_classes ** 2).view(n_classes, n_classes).float() # 原始 if dist.is_initialized(): dist.all_reduce(hist, dist.ReduceOp.SUM) # print("1111111111111111111111111111") # print(hist.sum(dim=0)) # print("222222222222222222222222222") # print(hist.sum(dim=1)) # print("3333333333333333333333333333333") # print(hist.diag()) # print("5555555555555555555555555555555") ious = hist.diag() / (hist.sum(dim=0) + hist.sum(dim=1) - hist.diag()) # print("6666666666666666666666666666666666") # print(ious) # print("7777777777777777777777777777777777") miou = ious.mean() # print("88888888888888888888888888888888888") # print(miou) # print("99999999999999999999999999999999999") # print("111111111111111111111111111111111111") # print(miou.item()) # print("222222222222222222222222222222222222") return miou.item() def evaluatev0(respth='./pretrained', dspth='./data', backbone='CatNetSmall', scale=0.75, use_boundary_2=False, use_boundary_4=False, use_boundary_8=False, use_boundary_16=False, use_conv_last=False): print('scale', scale) print('use_boundary_2', use_boundary_2) print('use_boundary_4', use_boundary_4) print('use_boundary_8', use_boundary_8) print('use_boundary_16', use_boundary_16) ## dataset batchsize = 5 n_workers = 2 dsval = CityScapes(dspth, mode='val') dl = DataLoader(dsval, batch_size = batchsize, shuffle = False, num_workers = n_workers, drop_last = False) n_classes = 19 print("backbone:", backbone) net = BiSeNet(backbone=backbone, n_classes=n_classes, use_boundary_2=use_boundary_2, use_boundary_4=use_boundary_4, use_boundary_8=use_boundary_8, use_boundary_16=use_boundary_16, use_conv_last=use_conv_last) net.load_state_dict(torch.load(respth)) net.cuda() net.eval() with torch.no_grad(): single_scale = MscEvalV0(scale=scale) mIOU = single_scale(net, dl, 19) logger = logging.getLogger() logger.info('mIOU is: %s\n', mIOU) class MscEval(object): def __init__(self, model, dataloader, scales = [0.5, 0.75, 1, 1.25, 1.5, 1.75], n_classes = 19, lb_ignore = 255, cropsize = 1024, flip = True, *args, **kwargs): self.scales = scales self.n_classes = n_classes self.lb_ignore = lb_ignore self.flip = flip self.cropsize = cropsize ## dataloader self.dl = dataloader self.net = model def pad_tensor(self, inten, size): N, C, H, W = inten.size() outten = torch.zeros(N, C, size[0], size[1]).cuda() outten.requires_grad = False margin_h, margin_w = size[0]-H, size[1]-W hst, hed = margin_h//2, margin_h//2+H wst, wed = margin_w//2, margin_w//2+W outten[:, :, hst:hed, wst:wed] = inten return outten, [hst, hed, wst, wed] def eval_chip(self, crop): with torch.no_grad(): out = self.net(crop)[0] prob = F.softmax(out, 1) if self.flip: crop = torch.flip(crop, dims=(3,)) out = self.net(crop)[0] out = torch.flip(out, dims=(3,)) prob += F.softmax(out, 1) prob = torch.exp(prob) return prob def crop_eval(self, im): cropsize = self.cropsize stride_rate = 5/6. N, C, H, W = im.size() long_size, short_size = (H,W) if H>W else (W,H) if long_size < cropsize: im, indices = self.pad_tensor(im, (cropsize, cropsize)) prob = self.eval_chip(im) prob = prob[:, :, indices[0]:indices[1], indices[2]:indices[3]] else: stride = math.ceil(cropsize*stride_rate) if short_size < cropsize: if H < W: im, indices = self.pad_tensor(im, (cropsize, W)) else: im, indices = self.pad_tensor(im, (H, cropsize)) N, C, H, W = im.size() n_x = math.ceil((W-cropsize)/stride)+1 n_y = math.ceil((H-cropsize)/stride)+1 prob = torch.zeros(N, self.n_classes, H, W).cuda() prob.requires_grad = False for iy in range(n_y): for ix in range(n_x): hed, wed = min(H, stride*iy+cropsize), min(W, stride*ix+cropsize) hst, wst = hed-cropsize, wed-cropsize chip = im[:, :, hst:hed, wst:wed] prob_chip = self.eval_chip(chip) prob[:, :, hst:hed, wst:wed] += prob_chip if short_size < cropsize: prob = prob[:, :, indices[0]:indices[1], indices[2]:indices[3]] return prob def scale_crop_eval(self, im, scale): N, C, H, W = im.size() new_hw = [int(H*scale), int(W*scale)] im = F.interpolate(im, new_hw, mode='bilinear', align_corners=True) prob = self.crop_eval(im) prob = F.interpolate(prob, (H, W), mode='bilinear', align_corners=True) return prob def compute_hist(self, pred, lb): n_classes = self.n_classes ignore_idx = self.lb_ignore keep = np.logical_not(lb==ignore_idx) merge = pred[keep] * n_classes + lb[keep] hist = np.bincount(merge, minlength=n_classes**2) hist = hist.reshape((n_classes, n_classes)) return hist def evaluate(self): ## evaluate n_classes = self.n_classes hist = np.zeros((n_classes, n_classes), dtype=np.float32) dloader = tqdm(self.dl) if dist.is_initialized() and not dist.get_rank()==0: dloader = self.dl for i, (imgs, label) in enumerate(dloader): N, _, H, W = label.shape probs = torch.zeros((N, self.n_classes, H, W)) probs.requires_grad = False imgs = imgs.cuda() for sc in self.scales: # prob = self.scale_crop_eval(imgs, sc) prob = self.eval_chip(imgs) probs += prob.detach().cpu() probs = probs.data.numpy() preds = np.argmax(probs, axis=1) hist_once = self.compute_hist(preds, label.data.numpy().squeeze(1)) hist = hist + hist_once IOUs = np.diag(hist) / (np.sum(hist, axis=0)+np.sum(hist, axis=1)-np.diag(hist)) mIOU = np.mean(IOUs) return mIOU def evaluate(respth='./resv1_catnet/pths/', dspth='./data'): ## logger logger = logging.getLogger() ## model logger.info('\n') logger.info('===='*20) logger.info('evaluating the model ...\n') logger.info('setup and restore model') n_classes = 19 net = BiSeNet(n_classes=n_classes) net.load_state_dict(torch.load(respth)) net.cuda() net.eval() ## dataset batchsize = 5 n_workers = 2 dsval = CityScapes(dspth, mode='val') dl = DataLoader(dsval, batch_size = batchsize, shuffle = False, num_workers = n_workers, drop_last = False) ## evaluator logger.info('compute the mIOU') evaluator = MscEval(net, dl, scales=[1], flip = False) ## eval mIOU = evaluator.evaluate() logger.info('mIOU is: {:.6f}'.format(mIOU)) if __name__ == "__main__": log_dir = 'evaluation_logs/' if not os.path.exists(log_dir): os.makedirs(log_dir) setup_logger(log_dir) #STDC1-Seg50 mIoU 0.7222 # evaluatev0('./checkpoints/STDC1-Seg/model_maxmIOU50.pth', dspth='./data', backbone='STDCNet813', scale=0.5, # use_boundary_2=False, use_boundary_4=False, use_boundary_8=True, use_boundary_16=False) #STDC1-Seg75 mIoU 0.7450 # evaluatev0('./checkpoints/STDC1-Seg/model_maxmIOU75.pth', dspth='./data', backbone='STDCNet813', scale=0.75, # use_boundary_2=False, use_boundary_4=False, use_boundary_8=True, use_boundary_16=False) #STDC2-Seg50 mIoU 0.7424 # evaluatev0('./checkpoints/STDC2-Seg/model_maxmIOU50.pth', dspth='./data', backbone='STDCNet1446', scale=0.5, # use_boundary_2=False, use_boundary_4=False, use_boundary_8=True, use_boundary_16=False) #STDC2-Seg75 mIoU 0.7704 # evaluatev0('./checkpoints/STDC2-Seg/model_maxmIOU75.pth', dspth='./data', backbone='STDCNet1446', scale=0.75, # use_boundary_2=False, use_boundary_4=False, use_boundary_8=True, use_boundary_16=False) evaluatev0('./checkpoints_1720/wurenji_train_STDC1-Seg/pths/model_maxmIOU75.pth', dspth='./data/segmentation/shuiyufenge_1720/', backbone='STDCNet1446', scale=0.75, use_boundary_2=False, use_boundary_4=False, use_boundary_8=True, use_boundary_16=False)