高速公路违停检测
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

53 rindas
1.8KB

  1. from models_711.segWaterBuilding import SegModel
  2. from PIL import Image
  3. from torchvision.transforms import transforms
  4. import numpy as np
  5. import cv2
  6. import os
  7. from cv2 import getTickCount, getTickFrequency
  8. import matplotlib.pyplot as plt
  9. def predict_lunkuo(impth=None):
  10. # segmodel = SegModel()
  11. loop_start = getTickCount()
  12. pred = segmodel.eval(image=img)
  13. loop_time = cv2.getTickCount() - loop_start
  14. tool_time = loop_time / (cv2.getTickFrequency())
  15. running_fps = int(1 / tool_time)
  16. print('running_fps:', running_fps)
  17. preds_squeeze = pred.squeeze(0)
  18. preds_squeeze[preds_squeeze != 0] = 255
  19. preds_squeeze = np.array(preds_squeeze.cpu())
  20. preds_squeeze = np.uint8(preds_squeeze)
  21. #print('preds_squeeze:', preds_squeeze.shape)
  22. _, binary = cv2.threshold(preds_squeeze,220,255,cv2.THRESH_BINARY)
  23. contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
  24. img_n = cv2.cvtColor(np.asarray(img),cv2.COLOR_RGB2BGR)
  25. img2 = cv2.drawContours(img_n,contours,-1,(0,0,255),8)
  26. # save_path = './' + '00000000000000000000000000001' + '.png'
  27. # cv2.imshow('image',img2)
  28. # cv2.waitKey(0)
  29. plt.figure()
  30. plt.imshow(img2[:,:,[2,1,0]])
  31. # plt.show()
  32. # if __name__ == '__main__':
  33. # impth = "/home/data/lijiwen/wurenjiqifei/images/20211225巡河_10.jpg"
  34. # # to_tensor = transforms.Compose([
  35. # # transforms.ToTensor(),
  36. # # transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
  37. # # ])
  38. # img = Image.open(impth).convert('RGB')
  39. # predict_lunkuo(impth=impth)
  40. if __name__ == '__main__':
  41. impth = '/home/data/lijiwen/wurenjiqifei/bu711/'
  42. segmodel = SegModel()
  43. folders = os.listdir(impth)
  44. for i in range(len(folders)):
  45. imgpath = os.path.join(impth, folders[i])
  46. img = Image.open(imgpath).convert('RGB')
  47. predict_lunkuo(impth=impth)