|
- #!/usr/bin/python
- # -*- encoding: utf-8 -*-
-
-
- import torch
- from torch.utils.data import Dataset
- import torchvision.transforms as transforms
-
- import os.path as osp
- import os
- from PIL import Image
- import numpy as np
- import json
-
- from transform import *
-
-
-
- class CityScapes(Dataset):
- def __init__(self, rootpth, cropsize=(640, 480), mode='train',
- randomscale=(0.125, 0.25, 0.375, 0.5, 0.675, 0.75, 0.875, 1.0, 1.25, 1.5), *args, **kwargs):
- super(CityScapes, self).__init__(*args, **kwargs)
- assert mode in ('train', 'val', 'test', 'trainval')
- self.mode = mode
- print('self.mode', self.mode)
- self.ignore_lb = 255
-
- with open('./cityscapes_info.json', 'r') as fr:
- labels_info = json.load(fr)
- self.lb_map = {el['id']: el['trainId'] for el in labels_info}
-
-
- ## parse img directory
- self.imgs = {}
- imgnames = []
- impth = osp.join(rootpth, 'leftImg8bit', mode)
- folders = os.listdir(impth)
- for fd in folders:
- fdpth = osp.join(impth, fd)
- im_names = os.listdir(fdpth)
- names = [el.replace('_leftImg8bit.png', '') for el in im_names]
- impths = [osp.join(fdpth, el) for el in im_names]
- imgnames.extend(names)
- self.imgs.update(dict(zip(names, impths)))
-
- ## parse gt directory
- self.labels = {}
- gtnames = []
- gtpth = osp.join(rootpth, 'gtFine', mode)
- folders = os.listdir(gtpth)
- for fd in folders:
- fdpth = osp.join(gtpth, fd)
- lbnames = os.listdir(fdpth)
- lbnames = [el for el in lbnames if 'labelIds' in el]
- names = [el.replace('_gtFine_labelIds.png', '') for el in lbnames]
- lbpths = [osp.join(fdpth, el) for el in lbnames]
- gtnames.extend(names)
- self.labels.update(dict(zip(names, lbpths)))
-
- self.imnames = imgnames
- self.len = len(self.imnames)
- print('self.len', self.mode, self.len)
- assert set(imgnames) == set(gtnames)
- assert set(self.imnames) == set(self.imgs.keys())
- assert set(self.imnames) == set(self.labels.keys())
-
- ## pre-processing
- self.to_tensor = transforms.Compose([
- transforms.ToTensor(),
- transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
- ])
- self.trans_train = Compose([
- ColorJitter(
- brightness = 0.5,
- contrast = 0.5,
- saturation = 0.5),
- HorizontalFlip(),
- RandomScale(randomscale),
- RandomCrop(cropsize)
- ])
-
-
- def __getitem__(self, idx):
- fn = self.imnames[idx]
- impth = self.imgs[fn]
- lbpth = self.labels[fn]
- img_tt = impth.split('/')[-1].split('.')[0]
- img = Image.open(impth).convert('RGB')
- label = Image.open(lbpth)
- if self.mode == 'train' or self.mode == 'trainval':
- im_lb = dict(im = img, lb = label)
- im_lb = self.trans_train(im_lb)
- img, label = im_lb['im'], im_lb['lb']
- img = self.to_tensor(img)
- label = np.array(label).astype(np.int64)[np.newaxis, :]
- label = self.convert_labels(label)
- return img, label, img_tt
-
-
- def __len__(self):
- return self.len
-
-
- def convert_labels(self, label):
- for k, v in self.lb_map.items():
- label[label == k] = v
- return label
-
-
-
- if __name__ == "__main__":
- from tqdm import tqdm
- ds = CityScapes('./data/', n_classes=19, mode='val')
- uni = []
- for im, lb in tqdm(ds):
- lb_uni = np.unique(lb).tolist()
- uni.extend(lb_uni)
- print(uni)
- print(set(uni))
|