|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218 |
- # Rethinking BiSeNet For Real-time Semantic Segmentation[[PDF](https://openaccess.thecvf.com/content/CVPR2021/papers/Fan_Rethinking_BiSeNet_for_Real-Time_Semantic_Segmentation_CVPR_2021_paper.pdf)]
-
- [![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)
-
- Mingyuan Fan, Shenqi Lai, Junshi Huang, Xiaoming Wei, Zhenhua Chai, Junfeng Luo, Xiaolin Wei
-
- In CVPR 2021.
-
- ## Overview
-
- <p align="center">
- <img src="images/overview-of-our-method.png" alt="overview-of-our-method" width="600"/></br>
- <span align="center">Speed-Accuracy performance comparison on the Cityscapes test set</span>
- </p>
- We present STDC-Seg, an mannully designed semantic segmentation network with not only state-of-the-art performance but also faster speed than current methods.
-
- Highlights:
-
- * **Short-Term Dense Concatenation Net**: A task-specific network for dense prediction task.
- * **Detail Guidance**: encode spatial information without harming inference speed.
- * **SOTA**: STDC-Seg achieves extremely fast speed (over 45\% faster than the closest automatically designed competitor on CityScapes) and maintains competitive accuracy.
- - see our Cityscapes test set submission [STDC1-Seg50](https://www.cityscapes-dataset.com/anonymous-results/?id=805e22f63fc53d1d0726cefdfe12527275afeb58d7249393bec6f483c3342b3b) [STDC1-Seg75](https://www.cityscapes-dataset.com/anonymous-results/?id=6bd0def75600fd0f1f411101fe2bbb0a2be5dba5c74e2f7d7f50eecc23bae64c) [STDC2-Seg50](https://www.cityscapes-dataset.com/anonymous-results/?id=b009a595f0d4e10a7f10ac25f29962b67995dc11b059f0c733ddd212a56b9ee0) [STDC2-Seg75](https://www.cityscapes-dataset.com/anonymous-results/?id=9012a16cdeb9d52aaa9ad5fb9cc1c6284efe8a3daecee85b4413284364ff3f45).
- - Here is our speed-accuracy comparison on Cityscapes test&val set.
-
- <p align="center">
- <img src="images/comparison-cityscapes.png" alt="Cityscapes" width="400"/></br>
- </p>
-
- ## Methods
-
- <p align="center">
- <img src="images/stdc-architecture.png" alt="stdc-architecture" width="600"/></br>
- </p>
-
- <p align="center">
- <img src="images/stdcseg-architecture.png" alt="stdcseg-artchitecture" width="800"/></br>
- <span align="center">Overview of the STDC Segmentation network</span>
- </p>
-
- ## Prerequisites
-
- - Pytorch 1.1
- - Python 3.5.6
- - NVIDIA GPU
- - TensorRT v5.1.5.0 (Only need for testing inference speed)
-
- This repository has been trained on Tesla V100. Configurations (e.g batch size, image patch size) may need to be changed on different platforms. Also, for fair competition, we test the inference speed on NVIDIA GTX 1080Ti.
-
- ## Installation
-
- * Clone this repo:
-
- ```bash
- git clone https://github.com/MichaelFan01/STDC-Seg.git
- cd STDC-Seg
- ```
-
- * Install dependencies:
-
- ```bash
- pip install -r requirements.txt
- ```
-
- * Install [PyCuda](https://wiki.tiker.net/PyCuda/Installation) which is a dependency of TensorRT.
- * Install [TensorRT](https://github.com/NVIDIA/TensorRT) (v5.1.5.0): a library for high performance inference on NVIDIA GPUs with [Python API](https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html#python).
-
- ## Usage
-
- ### 0. Prepare the dataset
-
- * Download the [leftImg8bit_trainvaltest.zip](https://www.cityscapes-dataset.com/file-handling/?packageID=3) and [gtFine_trainvaltest.zip](https://www.cityscapes-dataset.com/file-handling/?packageID=1) from the Cityscapes.
- * Link data to the `data` dir.
-
- ```bash
- ln -s /path_to_data/cityscapes/gtFine data/gtFine
- ln -s /path_to_data/leftImg8bit data/leftImg8bit
- ```
-
- ### 1. Train STDC-Seg
-
- Note: Backbone STDCNet813 denotes STDC1, STDCNet1446 denotes STDC2.
-
- * Train STDC1Seg:
-
- ```bash
- export CUDA_VISIBLE_DEVICES=0,1,2
- python -m torch.distributed.launch \
- --nproc_per_node=3 train.py \
- --respath checkpoints/train_STDC1-Seg/ \
- --backbone STDCNet813 \
- --mode train \
- --n_workers_train 12 \
- --n_workers_val 1 \
- --max_iter 60000 \
- --use_boundary_8 True \
- --pretrain_path checkpoints/STDCNet813M_73.91.tar
- ```
-
- * Train STDC2Seg:
-
- ```bash
- export CUDA_VISIBLE_DEVICES=0,1,2
- python -m torch.distributed.launch \
- --nproc_per_node=3 train.py \
- --respath checkpoints/train_STDC2-Seg/ \
- --backbone STDCNet1446 \
- --mode train \
- --n_workers_train 12 \
- --n_workers_val 1 \
- --max_iter 60000 \
- --use_boundary_8 True \
- --pretrain_path checkpoints/STDCNet1446_76.47.tar
- ```
-
- We will save the model's params in model_maxmIOU50.pth for input resolution 512x1024,and model_maxmIOU75.pth for input resolution 768 x 1536.
-
- ImageNet Pretrained STDCNet Weights for training and Cityscapes trained STDC-Seg weights for evaluation:
-
- BaiduYun Link: https://pan.baidu.com/s/1OdMsuQSSiK1EyNs6_KiFIw Password: q7dt
-
- GoogleDrive Link:[https://drive.google.com/drive/folders/1wROFwRt8qWHD4jSo8Zu1gp1d6oYJ3ns1?usp=sharing](https://drive.google.com/drive/folders/1wROFwRt8qWHD4jSo8Zu1gp1d6oYJ3ns1?usp=sharing)
-
- ###
-
- ### 2. Evaluation
-
- Here we use our pretrained STDCSeg as an example for the evaluation.
-
- * Choose the evaluation model in evaluation.py:
-
- ```python
- #STDC1-Seg50 mIoU 0.7222
- evaluatev0('./checkpoints/STDC1-Seg/model_maxmIOU50.pth', dspth='./data', backbone='STDCNet813', scale=0.5,
- use_boundary_2=False, use_boundary_4=False, use_boundary_8=True, use_boundary_16=False)
-
- #STDC1-Seg75 mIoU 0.7450
- evaluatev0('./checkpoints/STDC1-Seg/model_maxmIOU75.pth', dspth='./data', backbone='STDCNet813', scale=0.75,
- use_boundary_2=False, use_boundary_4=False, use_boundary_8=True, use_boundary_16=False)
-
- #STDC2-Seg50 mIoU 0.7424
- evaluatev0('./checkpoints/STDC2-Seg/model_maxmIOU50.pth', dspth='./data', backbone='STDCNet1446', scale=0.5,
- use_boundary_2=False, use_boundary_4=False, use_boundary_8=True, use_boundary_16=False)
-
- #STDC2-Seg75 mIoU 0.7704
- evaluatev0('./checkpoints/STDC2-Seg/model_maxmIOU75.pth', dspth='./data', backbone='STDCNet1446', scale=0.75,
- use_boundary_2=False, use_boundary_4=False, use_boundary_8=True, use_boundary_16=False)
- ```
-
- * Start the evaluation process:
-
- ```bash
- CUDA_VISIBLE_DEVICES=0 python evaluation.py
- ```
-
- ### 3. Latency
-
- #### 3.0 Latency measurement tools
-
- * If you have successfully installed [TensorRT](https://github.com/chenwydj/FasterSeg#installation), you will automatically use TensorRT for the following latency tests (see [function](https://github.com/chenwydj/FasterSeg/blob/master/tools/utils/darts_utils.py#L167) here).
- * Otherwise you will be switched to use Pytorch for the latency tests (see [function](https://github.com/chenwydj/FasterSeg/blob/master/tools/utils/darts_utils.py#L184) here).
-
- #### 3.1 Measure the latency of the FasterSeg
-
- * Choose the evaluation model in run_latency:
-
- ```python
- # STDC1Seg-50 250.4FPS on NVIDIA GTX 1080Ti
- backbone = 'STDCNet813'
- methodName = 'STDC1-Seg'
- inputSize = 512
- inputScale = 50
- inputDimension = (1, 3, 512, 1024)
-
- # STDC1Seg-75 126.7FPS on NVIDIA GTX 1080Ti
- backbone = 'STDCNet813'
- methodName = 'STDC1-Seg'
- inputSize = 768
- inputScale = 75
- inputDimension = (1, 3, 768, 1536)
-
- # STDC2Seg-50 188.6FPS on NVIDIA GTX 1080Ti
- backbone = 'STDCNet1446'
- methodName = 'STDC2-Seg'
- inputSize = 512
- inputScale = 50
- inputDimension = (1, 3, 512, 1024)
-
- # STDC2Seg-75 97.0FPS on NVIDIA GTX 1080Ti
- backbone = 'STDCNet1446'
- methodName = 'STDC2-Seg'
- inputSize = 768
- inputScale = 75
- inputDimension = (1, 3, 768, 1536)
- ```
-
- * Run the script:
-
- ```bash
- CUDA_VISIBLE_DEVICES=0 python run_latency.py
- ```
-
- ## Citation
-
- ```
- @InProceedings{Fan_2021_CVPR,
- author = {Fan, Mingyuan and Lai, Shenqi and Huang, Junshi and Wei, Xiaoming and Chai, Zhenhua and Luo, Junfeng and Wei, Xiaolin},
- title = {Rethinking BiSeNet for Real-Time Semantic Segmentation},
- booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
- month = {June},
- year = {2021},
- pages = {9716-9725}
- }
- ```
-
- ## Acknowledgement
-
- * Segmentation training and evaluation code from [BiSeNet](https://github.com/CoinCheung/BiSeNet).
- * Latency measurement from the [Faster-Seg](https://github.com/VITA-Group/FasterSeg).
|