|
- """Bilateral Segmentation Network"""
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import numpy as np
- # from core.models.base_models.resnet import resnet18,resnet50
- from torchvision import models
- # from core.nn import _ConvBNReLU
-
- # __all__ = ['BiSeNet', 'get_bisenet', 'get_bisenet_resnet18_citys']
-
- class _ConvBNReLU(nn.Module):
- def __init__(self,in_channels,out_channels, k, s, p, norm_layer=None):
- super(_ConvBNReLU, self).__init__()
- self.conv =nn.Conv2d(in_channels, out_channels, kernel_size=k, stride=s, padding=p)
- self.bn = nn.BatchNorm2d(out_channels)
- self.relu = nn.ReLU(inplace = True)
-
- def forward(self, x):
- x = self.conv(x)
- x = self.bn(x)
- x = self.relu(x)
-
- return x
- class BiSeNet(nn.Module):
- def __init__(self, nclass, backbone='resnet18', aux=False, jpu=False, pretrained_base=True, **kwargs):
- super(BiSeNet, self).__init__()
- self.aux = aux
- self.spatial_path = SpatialPath(3, 128, **kwargs)
- self.context_path = ContextPath(backbone, pretrained_base, **kwargs)
- self.ffm = FeatureFusion(256, 256, 4, **kwargs)
- self.head = _BiSeHead(256, 64, nclass, **kwargs)
- if aux:
- self.auxlayer1 = _BiSeHead(128, 256, nclass, **kwargs)
- self.auxlayer2 = _BiSeHead(128, 256, nclass, **kwargs)
-
- self.__setattr__('exclusive',
- ['spatial_path', 'context_path', 'ffm', 'head', 'auxlayer1', 'auxlayer2'] if aux else [
- 'spatial_path', 'context_path', 'ffm', 'head'])
-
- def forward(self, x,outsize=None,test_flag=False):
- size = x.size()[2:]
- spatial_out = self.spatial_path(x)
- context_out = self.context_path(x)
- fusion_out = self.ffm(spatial_out, context_out[-1])
- outputs = []
- x = self.head(fusion_out)
- x = F.interpolate(x, size, mode='bilinear', align_corners=True)
-
- if outsize:
- print('######using torch resize#######',outsize)
- x = F.interpolate(x, outsize, mode='bilinear', align_corners=True)
- outputs.append(x)
-
- if self.aux:
- auxout1 = self.auxlayer1(context_out[0])
- auxout1 = F.interpolate(auxout1, size, mode='bilinear', align_corners=True)
- outputs.append(auxout1)
- auxout2 = self.auxlayer2(context_out[1])
- auxout2 = F.interpolate(auxout2, size, mode='bilinear', align_corners=True)
- outputs.append(auxout2)
- if test_flag:
- outputs = [torch.argmax(outputx, axis=1) for outputx in outputs]
- #return tuple(outputs)
- return outputs[0]
-
- class BiSeNet_MultiOutput(nn.Module):
- def __init__(self, nclass, backbone='resnet18', aux=False, jpu=False, pretrained_base=True, **kwargs):
- super(BiSeNet_MultiOutput, self).__init__()
- self.aux = aux
- self.spatial_path = SpatialPath(3, 128, **kwargs)
- self.context_path = ContextPath(backbone, pretrained_base, **kwargs)
- self.ffm = FeatureFusion(256, 256, 4, **kwargs)
- assert isinstance(nclass, list)
- self.outCnt = len(nclass)
- for ii, nclassii in enumerate(nclass):
- setattr(self, 'head%d'%(ii), _BiSeHead(256, 64, nclassii, **kwargs))
-
- if aux:
- self.auxlayer1 = _BiSeHead(128, 256, nclass, **kwargs)
- self.auxlayer2 = _BiSeHead(128, 256, nclass, **kwargs)
-
- self.__setattr__('exclusive',
- ['spatial_path', 'context_path', 'ffm', 'head', 'auxlayer1', 'auxlayer2'] if aux else [
- 'spatial_path', 'context_path', 'ffm', 'head'])
-
- def forward(self, x, outsize=None, test_flag=False, smooth_kernel=0):
- size = x.size()[2:]
- spatial_out = self.spatial_path(x)
- context_out = self.context_path(x)
- fusion_out = self.ffm(spatial_out, context_out[-1])
- outputs = []
- for ii in range(self.outCnt):
- x = getattr(self, 'head%d'%(ii))(fusion_out)
- x = F.interpolate(x, size, mode='bilinear', align_corners=True)
- outputs.append(x)
-
- if self.aux:
- auxout1 = self.auxlayer1(context_out[0])
- auxout1 = F.interpolate(auxout1, size, mode='bilinear', align_corners=True)
- outputs.append(auxout1)
- auxout2 = self.auxlayer2(context_out[1])
- auxout2 = F.interpolate(auxout2, size, mode='bilinear', align_corners=True)
- outputs.append(auxout2)
- if test_flag:
- outputs = [torch.argmax(outputx ,axis=1) for outputx in outputs]
- if smooth_kernel>0:
- gaussian_kernel = torch.from_numpy(np.ones((1,1,smooth_kernel,smooth_kernel)) )
-
- pad = int((smooth_kernel - 1)/2)
- if not gaussian_kernel.is_cuda:
- gaussian_kernel = gaussian_kernel.to(x.device)
- #print(gaussian_kernel.dtype,gaussian_kernel,outputs[0].dtype)
- outputs = [x.unsqueeze(1).double() for x in outputs]
- outputs = [torch.conv2d(x, gaussian_kernel, padding=pad) for x in outputs]
- outputs = [x.squeeze(1).long() for x in outputs]
- #return tuple(outputs)
- return outputs
-
- class _BiSeHead(nn.Module):
- def __init__(self, in_channels, inter_channels, nclass, norm_layer=nn.BatchNorm2d, **kwargs):
- super(_BiSeHead, self).__init__()
- self.block = nn.Sequential(
- _ConvBNReLU(in_channels, inter_channels, 3, 1, 1, norm_layer=norm_layer),
- nn.Dropout(0.1),
- nn.Conv2d(inter_channels, nclass, 1)
- )
-
- def forward(self, x):
- x = self.block(x)
- return x
-
-
- class SpatialPath(nn.Module):
- """Spatial path"""
-
- def __init__(self, in_channels, out_channels, norm_layer=nn.BatchNorm2d, **kwargs):
- super(SpatialPath, self).__init__()
- inter_channels = 64
- self.conv7x7 = _ConvBNReLU(in_channels, inter_channels, 7, 2, 3, norm_layer=norm_layer)
- self.conv3x3_1 = _ConvBNReLU(inter_channels, inter_channels, 3, 2, 1, norm_layer=norm_layer)
- self.conv3x3_2 = _ConvBNReLU(inter_channels, inter_channels, 3, 2, 1, norm_layer=norm_layer)
- self.conv1x1 = _ConvBNReLU(inter_channels, out_channels, 1, 1, 0, norm_layer=norm_layer)
-
- def forward(self, x):
- x = self.conv7x7(x)
- x = self.conv3x3_1(x)
- x = self.conv3x3_2(x)
- x = self.conv1x1(x)
-
- return x
-
-
- class _GlobalAvgPooling(nn.Module):
- def __init__(self, in_channels, out_channels, norm_layer, **kwargs):
- super(_GlobalAvgPooling, self).__init__()
- self.gap = nn.Sequential(
- nn.AdaptiveAvgPool2d(1),
- nn.Conv2d(in_channels, out_channels, 1, bias=False),
- norm_layer(out_channels),
- nn.ReLU(True)
- )
-
- def forward(self, x):
- size = x.size()[2:]
- pool = self.gap(x)
- out = F.interpolate(pool, size, mode='bilinear', align_corners=True)
- return out
-
-
- class AttentionRefinmentModule(nn.Module):
- def __init__(self, in_channels, out_channels, norm_layer=nn.BatchNorm2d, **kwargs):
- super(AttentionRefinmentModule, self).__init__()
- self.conv3x3 = _ConvBNReLU(in_channels, out_channels, 3, 1, 1, norm_layer=norm_layer)
- self.channel_attention = nn.Sequential(
- nn.AdaptiveAvgPool2d(1),
- _ConvBNReLU(out_channels, out_channels, 1, 1, 0, norm_layer=norm_layer),
- nn.Sigmoid()
- )
-
- def forward(self, x):
- x = self.conv3x3(x)
- attention = self.channel_attention(x)
- x = x * attention
- return x
-
-
- class ContextPath(nn.Module):
- def __init__(self, backbone='resnet18', pretrained_base=True, norm_layer=nn.BatchNorm2d, **kwargs):
- super(ContextPath, self).__init__()
- if backbone == 'resnet18':
- pretrained = models.resnet18(pretrained=pretrained_base, **kwargs)
- elif backbone=='resnet50':
- pretrained = models.resnet50(pretrained=pretrained_base, **kwargs)
- else:
- raise RuntimeError('unknown backbone: {}'.format(backbone))
- self.conv1 = pretrained.conv1
- self.bn1 = pretrained.bn1
- self.relu = pretrained.relu
- self.maxpool = pretrained.maxpool
- self.layer1 = pretrained.layer1
- self.layer2 = pretrained.layer2
- self.layer3 = pretrained.layer3
- self.layer4 = pretrained.layer4
-
- inter_channels = 128
- self.global_context = _GlobalAvgPooling(512, inter_channels, norm_layer)
-
- self.arms = nn.ModuleList(
- [AttentionRefinmentModule(512, inter_channels, norm_layer, **kwargs),
- AttentionRefinmentModule(256, inter_channels, norm_layer, **kwargs)]
- )
- self.refines = nn.ModuleList(
- [_ConvBNReLU(inter_channels, inter_channels, 3, 1, 1, norm_layer=norm_layer),
- _ConvBNReLU(inter_channels, inter_channels, 3, 1, 1, norm_layer=norm_layer)]
- )
-
- def forward(self, x):
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- x = self.maxpool(x)
- x = self.layer1(x)
-
- context_blocks = []
- context_blocks.append(x)
- x = self.layer2(x)
- context_blocks.append(x)
- c3 = self.layer3(x)
- context_blocks.append(c3)
- c4 = self.layer4(c3)
- context_blocks.append(c4)
- context_blocks.reverse()
-
- global_context = self.global_context(c4)
- last_feature = global_context
- context_outputs = []
- for i, (feature, arm, refine) in enumerate(zip(context_blocks[:2], self.arms, self.refines)):
- feature = arm(feature)
- feature += last_feature
- last_feature = F.interpolate(feature, size=context_blocks[i + 1].size()[2:],
- mode='bilinear', align_corners=True)
- last_feature = refine(last_feature)
- context_outputs.append(last_feature)
-
- return context_outputs
-
-
- class FeatureFusion(nn.Module):
- def __init__(self, in_channels, out_channels, reduction=1, norm_layer=nn.BatchNorm2d, **kwargs):
- super(FeatureFusion, self).__init__()
- self.conv1x1 = _ConvBNReLU(in_channels, out_channels, 1, 1, 0, norm_layer=norm_layer, **kwargs)
- self.channel_attention = nn.Sequential(
- nn.AdaptiveAvgPool2d(1),
- _ConvBNReLU(out_channels, out_channels // reduction, 1, 1, 0, norm_layer=norm_layer),
- _ConvBNReLU(out_channels // reduction, out_channels, 1, 1, 0, norm_layer=norm_layer),
- nn.Sigmoid()
- )
-
- def forward(self, x1, x2):
- fusion = torch.cat([x1, x2], dim=1)
- out = self.conv1x1(fusion)
- attention = self.channel_attention(out)
- out = out + out * attention
- return out
-
-
- # def get_bisenet(dataset='citys', backbone='resnet18', pretrained=False, root='~/.torch/models',
- # pretrained_base=True, **kwargs):
- # acronyms = {
- # 'pascal_voc': 'pascal_voc',
- # 'pascal_aug': 'pascal_aug',
- # 'ade20k': 'ade',
- # 'coco': 'coco',
- # 'citys': 'citys',
- # }
- # from ..data.dataloader import datasets
- # model = BiSeNet(datasets[dataset].NUM_CLASS, backbone=backbone, pretrained_base=pretrained_base, **kwargs)
- # if pretrained:
- # from .model_store import get_model_file
- # device = torch.device(kwargs['local_rank'])
- # model.load_state_dict(torch.load(get_model_file('bisenet_%s_%s' % (backbone, acronyms[dataset]), root=root),
- # map_location=device))
- # return model
- #
- #
- # def get_bisenet_resnet18_citys(**kwargs):
- # return get_bisenet('citys', 'resnet18', **kwargs)
-
-
- # if __name__ == '__main__':
- # # img = torch.randn(2, 3, 224, 224)
- # # model = BiSeNet(19, backbone='resnet18')
- # # print(model.exclusive)
- # input = torch.rand(2, 3, 224, 224)
- # model = BiSeNet(4, pretrained_base=True)
- # # target = torch.zeros(4, 512, 512).cuda()
- # # model.eval()
- # # print(model)
- # loss = model(input)
- # print(loss, loss.shape)
- #
- # # from torchsummary import summary
- # #
- # # summary(model, (3, 224, 224)) # 打印表格,按顺序输出每层的输出形状和参数
- # import torch
- # from thop import profile
- # from torchsummary import summary
- #
- # flop, params = profile(model, input_size=(1, 3, 512, 512))
- # print('flops:{:.3f}G\nparams:{:.3f}M'.format(flop / 1e9, params / 1e6))
-
- if __name__ == '__main__':
- x = torch.rand(2, 3, 256, 256)
-
- # model = BiSeNet_MultiOutput(nclass=[2, 2]) # 原始
- # model = BiSeNet_MultiOutput(nclass=[3, 3]) # 改动
- model = BiSeNet_MultiOutput(nclass=[3, 3]) # 改动
-
- # print(model)
- out = model(x)
- print(out[0].size())
- # print()
|