交通事故检测代码
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

437 lines
18KB

  1. # Plotting utils
  2. import glob
  3. import math
  4. import os
  5. import random
  6. from copy import copy
  7. from pathlib import Path
  8. import cv2
  9. import matplotlib
  10. import matplotlib.pyplot as plt
  11. import numpy as np
  12. import pandas as pd
  13. import seaborn as sns
  14. import torch
  15. import yaml
  16. from PIL import Image, ImageDraw, ImageFont
  17. from scipy.signal import butter, filtfilt
  18. from utils.general import xywh2xyxy, xyxy2xywh
  19. from utils.metrics import fitness
  20. # Settings
  21. matplotlib.rc('font', **{'size': 11})
  22. matplotlib.use('Agg') # for writing to files only
  23. def color_list():
  24. # Return first 10 plt colors as (r,g,b) https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
  25. def hex2rgb(h):
  26. return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
  27. return [hex2rgb(h) for h in matplotlib.colors.TABLEAU_COLORS.values()] # or BASE_ (8), CSS4_ (148), XKCD_ (949)
  28. def hist2d(x, y, n=100):
  29. # 2d histogram used in labels.png and evolve.png
  30. xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
  31. hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
  32. xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
  33. yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
  34. return np.log(hist[xidx, yidx])
  35. def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
  36. # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
  37. def butter_lowpass(cutoff, fs, order):
  38. nyq = 0.5 * fs
  39. normal_cutoff = cutoff / nyq
  40. return butter(order, normal_cutoff, btype='low', analog=False)
  41. b, a = butter_lowpass(cutoff, fs, order=order)
  42. return filtfilt(b, a, data) # forward-backward filter
  43. def plot_one_box(x, img, color=None, label=None, line_thickness=3):
  44. # Plots one bounding box on image img
  45. # tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
  46. color = color or [random.randint(0, 255) for _ in range(3)]
  47. c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
  48. print(6666666666666666)
  49. print(c1, c2)
  50. print(7777777777777777)
  51. cv2.rectangle(img, c1, c2, color, thickness=1, lineType=cv2.LINE_AA)
  52. # if label:
  53. # tf = max(tl - 1, 1) # font thickness
  54. # t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
  55. # c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
  56. # cv2.rectangle(img, c1, c2, color, thickness=1, lineType=cv2.LINE_AA) # filled
  57. # cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
  58. def plot_one_box_PIL(box, img, color=None, label=None, line_thickness=None):
  59. img = Image.fromarray(img)
  60. draw = ImageDraw.Draw(img)
  61. line_thickness = line_thickness or max(int(min(img.size) / 200), 2)
  62. draw.rectangle(box, width=line_thickness, outline=tuple(color)) # plot
  63. if label:
  64. fontsize = max(round(max(img.size) / 40), 12)
  65. font = ImageFont.truetype("Arial.ttf", fontsize)
  66. txt_width, txt_height = font.getsize(label)
  67. draw.rectangle([box[0], box[1] - txt_height + 4, box[0] + txt_width, box[1]], fill=tuple(color))
  68. draw.text((box[0], box[1] - txt_height + 1), label, fill=(255, 255, 255), font=font)
  69. return np.asarray(img)
  70. def plot_wh_methods(): # from utils.plots import *; plot_wh_methods()
  71. # Compares the two methods for width-height anchor multiplication
  72. # https://github.com/ultralytics/yolov3/issues/168
  73. x = np.arange(-4.0, 4.0, .1)
  74. ya = np.exp(x)
  75. yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
  76. fig = plt.figure(figsize=(6, 3), tight_layout=True)
  77. plt.plot(x, ya, '.-', label='YOLOv3')
  78. plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2')
  79. plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6')
  80. plt.xlim(left=-4, right=4)
  81. plt.ylim(bottom=0, top=6)
  82. plt.xlabel('input')
  83. plt.ylabel('output')
  84. plt.grid()
  85. plt.legend()
  86. fig.savefig('comparison.png', dpi=200)
  87. def output_to_target(output):
  88. # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
  89. targets = []
  90. for i, o in enumerate(output):
  91. for *box, conf, cls in o.cpu().numpy():
  92. targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
  93. return np.array(targets)
  94. def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
  95. # Plot image grid with labels
  96. if isinstance(images, torch.Tensor):
  97. images = images.cpu().float().numpy()
  98. if isinstance(targets, torch.Tensor):
  99. targets = targets.cpu().numpy()
  100. # un-normalise
  101. if np.max(images[0]) <= 1:
  102. images *= 255
  103. tl = 3 # line thickness
  104. tf = max(tl - 1, 1) # font thickness
  105. bs, _, h, w = images.shape # batch size, _, height, width
  106. bs = min(bs, max_subplots) # limit plot images
  107. ns = np.ceil(bs ** 0.5) # number of subplots (square)
  108. # Check if we should resize
  109. scale_factor = max_size / max(h, w)
  110. if scale_factor < 1:
  111. h = math.ceil(scale_factor * h)
  112. w = math.ceil(scale_factor * w)
  113. colors = color_list() # list of colors
  114. mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
  115. for i, img in enumerate(images):
  116. if i == max_subplots: # if last batch has fewer images than we expect
  117. break
  118. block_x = int(w * (i // ns))
  119. block_y = int(h * (i % ns))
  120. img = img.transpose(1, 2, 0)
  121. if scale_factor < 1:
  122. img = cv2.resize(img, (w, h))
  123. mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
  124. if len(targets) > 0:
  125. image_targets = targets[targets[:, 0] == i]
  126. boxes = xywh2xyxy(image_targets[:, 2:6]).T
  127. classes = image_targets[:, 1].astype('int')
  128. labels = image_targets.shape[1] == 6 # labels if no conf column
  129. conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
  130. if boxes.shape[1]:
  131. if boxes.max() <= 1.01: # if normalized with tolerance 0.01
  132. boxes[[0, 2]] *= w # scale to pixels
  133. boxes[[1, 3]] *= h
  134. elif scale_factor < 1: # absolute coords need scale if image scales
  135. boxes *= scale_factor
  136. boxes[[0, 2]] += block_x
  137. boxes[[1, 3]] += block_y
  138. for j, box in enumerate(boxes.T):
  139. cls = int(classes[j])
  140. color = colors[cls % len(colors)]
  141. cls = names[cls] if names else cls
  142. if labels or conf[j] > 0.25: # 0.25 conf thresh
  143. label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
  144. plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
  145. # Draw image filename labels
  146. if paths:
  147. label = Path(paths[i]).name[:40] # trim to 40 char
  148. t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
  149. cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
  150. lineType=cv2.LINE_AA)
  151. # Image border
  152. cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
  153. if fname:
  154. r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
  155. mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
  156. # cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
  157. Image.fromarray(mosaic).save(fname) # PIL save
  158. return mosaic
  159. def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
  160. # Plot LR simulating training for full epochs
  161. optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
  162. y = []
  163. for _ in range(epochs):
  164. scheduler.step()
  165. y.append(optimizer.param_groups[0]['lr'])
  166. plt.plot(y, '.-', label='LR')
  167. plt.xlabel('epoch')
  168. plt.ylabel('LR')
  169. plt.grid()
  170. plt.xlim(0, epochs)
  171. plt.ylim(0)
  172. plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
  173. plt.close()
  174. def plot_test_txt(): # from utils.plots import *; plot_test()
  175. # Plot test.txt histograms
  176. x = np.loadtxt('test.txt', dtype=np.float32)
  177. box = xyxy2xywh(x[:, :4])
  178. cx, cy = box[:, 0], box[:, 1]
  179. fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
  180. ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
  181. ax.set_aspect('equal')
  182. plt.savefig('hist2d.png', dpi=300)
  183. fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
  184. ax[0].hist(cx, bins=600)
  185. ax[1].hist(cy, bins=600)
  186. plt.savefig('hist1d.png', dpi=200)
  187. def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
  188. # Plot targets.txt histograms
  189. x = np.loadtxt('targets.txt', dtype=np.float32).T
  190. s = ['x targets', 'y targets', 'width targets', 'height targets']
  191. fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
  192. ax = ax.ravel()
  193. for i in range(4):
  194. ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
  195. ax[i].legend()
  196. ax[i].set_title(s[i])
  197. plt.savefig('targets.jpg', dpi=200)
  198. def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt()
  199. # Plot study.txt generated by test.py
  200. fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
  201. # ax = ax.ravel()
  202. fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
  203. # for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
  204. for f in sorted(Path(path).glob('study*.txt')):
  205. y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
  206. x = np.arange(y.shape[1]) if x is None else np.array(x)
  207. s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
  208. # for i in range(7):
  209. # ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
  210. # ax[i].set_title(s[i])
  211. j = y[3].argmax() + 1
  212. ax2.plot(y[6, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8,
  213. label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
  214. ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
  215. 'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
  216. ax2.grid(alpha=0.2)
  217. ax2.set_yticks(np.arange(20, 60, 5))
  218. ax2.set_xlim(0, 57)
  219. ax2.set_ylim(30, 55)
  220. ax2.set_xlabel('GPU Speed (ms/img)')
  221. ax2.set_ylabel('COCO AP val')
  222. ax2.legend(loc='lower right')
  223. plt.savefig(str(Path(path).name) + '.png', dpi=300)
  224. def plot_labels(labels, names=(), save_dir=Path(''), loggers=None):
  225. # plot dataset labels
  226. print('Plotting labels... ')
  227. c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
  228. nc = int(c.max() + 1) # number of classes
  229. colors = color_list()
  230. x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
  231. # seaborn correlogram
  232. sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
  233. plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
  234. plt.close()
  235. # matplotlib labels
  236. matplotlib.use('svg') # faster
  237. ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
  238. ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
  239. ax[0].set_ylabel('instances')
  240. if 0 < len(names) < 30:
  241. ax[0].set_xticks(range(len(names)))
  242. ax[0].set_xticklabels(names, rotation=90, fontsize=10)
  243. else:
  244. ax[0].set_xlabel('classes')
  245. sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
  246. sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
  247. # rectangles
  248. labels[:, 1:3] = 0.5 # center
  249. labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
  250. img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
  251. for cls, *box in labels[:1000]:
  252. ImageDraw.Draw(img).rectangle(box, width=1, outline=colors[int(cls) % 10]) # plot
  253. ax[1].imshow(img)
  254. ax[1].axis('off')
  255. for a in [0, 1, 2, 3]:
  256. for s in ['top', 'right', 'left', 'bottom']:
  257. ax[a].spines[s].set_visible(False)
  258. plt.savefig(save_dir / 'labels.jpg', dpi=200)
  259. matplotlib.use('Agg')
  260. plt.close()
  261. # loggers
  262. for k, v in loggers.items() or {}:
  263. if k == 'wandb' and v:
  264. v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]}, commit=False)
  265. def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution()
  266. # Plot hyperparameter evolution results in evolve.txt
  267. with open(yaml_file) as f:
  268. hyp = yaml.load(f, Loader=yaml.SafeLoader)
  269. x = np.loadtxt('evolve.txt', ndmin=2)
  270. f = fitness(x)
  271. # weights = (f - f.min()) ** 2 # for weighted results
  272. plt.figure(figsize=(10, 12), tight_layout=True)
  273. matplotlib.rc('font', **{'size': 8})
  274. for i, (k, v) in enumerate(hyp.items()):
  275. y = x[:, i + 7]
  276. # mu = (y * weights).sum() / weights.sum() # best weighted result
  277. mu = y[f.argmax()] # best single result
  278. plt.subplot(6, 5, i + 1)
  279. plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
  280. plt.plot(mu, f.max(), 'k+', markersize=15)
  281. plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
  282. if i % 5 != 0:
  283. plt.yticks([])
  284. print('%15s: %.3g' % (k, mu))
  285. plt.savefig('evolve.png', dpi=200)
  286. print('\nPlot saved as evolve.png')
  287. def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
  288. # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
  289. ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
  290. s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
  291. files = list(Path(save_dir).glob('frames*.txt'))
  292. for fi, f in enumerate(files):
  293. try:
  294. results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
  295. n = results.shape[1] # number of rows
  296. x = np.arange(start, min(stop, n) if stop else n)
  297. results = results[:, x]
  298. t = (results[0] - results[0].min()) # set t0=0s
  299. results[0] = x
  300. for i, a in enumerate(ax):
  301. if i < len(results):
  302. label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
  303. a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
  304. a.set_title(s[i])
  305. a.set_xlabel('time (s)')
  306. # if fi == len(files) - 1:
  307. # a.set_ylim(bottom=0)
  308. for side in ['top', 'right']:
  309. a.spines[side].set_visible(False)
  310. else:
  311. a.remove()
  312. except Exception as e:
  313. print('Warning: Plotting error for %s; %s' % (f, e))
  314. ax[1].legend()
  315. plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
  316. def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay()
  317. # Plot training 'results*.txt', overlaying train and val losses
  318. s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
  319. t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
  320. for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
  321. results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
  322. n = results.shape[1] # number of rows
  323. x = range(start, min(stop, n) if stop else n)
  324. fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
  325. ax = ax.ravel()
  326. for i in range(5):
  327. for j in [i, i + 5]:
  328. y = results[j, x]
  329. ax[i].plot(x, y, marker='.', label=s[j])
  330. # y_smooth = butter_lowpass_filtfilt(y)
  331. # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
  332. ax[i].set_title(t[i])
  333. ax[i].legend()
  334. ax[i].set_ylabel(f) if i == 0 else None # add filename
  335. fig.savefig(f.replace('.txt', '.png'), dpi=200)
  336. def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
  337. # Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp')
  338. fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
  339. ax = ax.ravel()
  340. s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
  341. 'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
  342. if bucket:
  343. # files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
  344. files = ['results%g.txt' % x for x in id]
  345. c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
  346. os.system(c)
  347. else:
  348. files = list(Path(save_dir).glob('results*.txt'))
  349. assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
  350. for fi, f in enumerate(files):
  351. try:
  352. results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
  353. n = results.shape[1] # number of rows
  354. x = range(start, min(stop, n) if stop else n)
  355. for i in range(10):
  356. y = results[i, x]
  357. if i in [0, 1, 2, 5, 6, 7]:
  358. y[y == 0] = np.nan # don't show zero loss values
  359. # y /= y[0] # normalize
  360. label = labels[fi] if len(labels) else f.stem
  361. ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
  362. ax[i].set_title(s[i])
  363. # if i in [5, 6, 7]: # share train and val loss y axes
  364. # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
  365. except Exception as e:
  366. print('Warning: Plotting error for %s; %s' % (f, e))
  367. ax[1].legend()
  368. fig.savefig(Path(save_dir) / 'results.png', dpi=200)